Chip One Stop – 电子元器件、半导体的销售网站
Menu
China
Change
中文
SELECT YOUR LANGUAGE
人民币
SELECT YOUR CURRENCY FOR DISPLAY
关于优惠等级和折扣率

目前的商品价格将适用于以下


・根据顾客的购买情况可以享受优惠和折扣
・关于折扣仅限于从本网站直接下单的订单
・部分产品和阶梯数量不被包含在优惠折扣产品中
・关于优惠等级的详细信息请联系您的销售人员
・不能与其它优惠同时使用

新闻中心

Toshiba’s newly developed fully isolated N-channel LDMOS realizes high HBM robustness and high breakdown voltage to negative bias in 0.13-micron generation analog power semiconductors

2017/06/07Toshiba  模拟


June 1, 2017


Storage & Electronic Devices Solutions Company


Toshiba has developed fully isolated N-channel LDMOS*1 technology that overcomes the trade-off between breakdown voltage to negative bias (BVnb) and HBM*2 robustness, a measure of resistance to electrostatic discharge (ESD). Details of this achievement were reported on June 1 at ISPSD 2017 (International Symposium on Power Semiconductor Devices and ICs 2017), an IEEE-sponsored international conference on power semiconductors, held in Japan.


Recent years have seen an increasing need for automotive analog ICs and Power ICs with fully isolated Nch-LDMOS and high BVnb, especially devices supporting voltages of 40V and over. Achieving a higher BVnb has until now required a trade-off with securing HBM robustness, and achieving both has required a bigger die, in order to electrically isolate substrates and the inside of the die. This has impeded progress in miniaturization and cost reduction. Furthermore, since HBM robustness is a parameter that is difficult to estimate without actually fabricating devices, a new parameter for estimating HBM robustness was strongly required.


In order to overcome the trade-off between HBM robustness and BVnb while minimizing die size, Toshiba conducted 2D TCAD simulations of numerous parameters and found that current flow concentration, which corresponds to the peak value of the electric field under the drain region (EUD*3), depends on HBM robustness. As a result of utilizing EUD to optimize die characteristics by adjusting various parameters, Toshiba successfully improved HBM robustness while achieving a rated voltage of 25 to 96V. This also realized a die size reduction of 46% for 80V fully isolated Nch-LDMOS products, satisfying HBM +/-4kV, a measure of HBM robustness.


Toshiba has produced prototypes of BiCD-0.13G3 process-based*4 devices using the new technology and plans to start mass production in fiscal year 2018. The company is committed to contributing to the realization of lighter, more efficient automobiles and improving their performance by expanding the range of products offering fully isolated Nch-LDMOS.


*1 Fully isolated N-channel LDMOS: A laterally diffused MOS transistor with a structure that reduces the electric field between the drain and gate by fully isolating them electrically.
*2 HBM (Human Body Model): a model for characterizing the susceptibility of electronic devices to ESD, based on ESD from the human body.
*3 EUD (Electrical field under Drain region): Electric field strength observed under the drain source.
*4 BiCD-0.13G3 process technology: One of Toshiba’s power semiconductor process technologies. Users can select the process that suits their application: BiCD-0.13G1/G2/G3, mainly for automotive devices; CD-0.13G3, mainly for motor control drivers; and CD-0.13G1/G2, mainly for power management IC.


Information in this document, including product prices and specifications, content of services and contact information, is correct on the date of the announcement but is subject to change without prior notice.


Toshiba Corporation- Semiconductor and Storage Products Company Website>
http://toshiba.semicon-storage.com/ap-en?mm=cp170606&no=04

 


 


Visit Chip1Stop Chinese site
Visit Chip1Stop Korean site
Visit Chip1Stop English site
Visit Chip1Stop German site











企业HP:
http://toshiba.semicon-storage.com/ap-en?mm=cp170606&no=04

Toshiba新闻发布

相关新闻